Cross-Media Retrieval using Probabilistic Model of Automatic Image Annotation

نویسندگان

  • Ying Xia
  • YunLong Wu
  • JiangFan Feng
  • Edward Chang
چکیده

In recent years, automatic image annotation (AIA) has been applied to cross-media retrieval usually due to its advantage of mining correlations of images and annotation texts efficiently. However, some AIA methods just annotate images as a unit and the accuracy of annotation may not be acceptable. In this paper, we propose a kind of probabilistic model which may assign keywords to an un-annotated image automatically based on a training dataset of images. Images in the training dataset are segmented into regions and a kind of vocabulary called blob is used to represent these image regions. Blobs are generated by using K-Means algorithm to cluster these image regions. Through this model, we can predict the probability of assigning a keyword into a blob. After the accomplishment of annotation, a keyword corresponds to one image region. Furthermore, the feature vectors of text documents are generated by TF.IDF method and images’ automatic annotation information is used to retrieve relevant text documents. Experiments on the IAPR TC-12 dataset and 500 Wikipedia webpages about landscape show the usefulness of applying probabilistic model of AIA to the cross-media retrieval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Neighbor Voting for Automatic Image Annotation

With quick development of digital images and the availability of imaging tools, massive amounts of images are created. Therefore, efficient management and suitable retrieval, especially by computers, is one of themost challenging fields in image processing. Automatic image annotation (AIA) or refers to attaching words, keywords or comments to an image or to a selected part of it. In this paper,...

متن کامل

Tags Re-ranking Using Multi-level Features in Automatic Image Annotation

Automatic image annotation is a process in which computer systems automatically assign the textual tags related with visual content to a query image. In most cases, inappropriate tags generated by the users as well as the images without any tags among the challenges available in this field have a negative effect on the query's result. In this paper, a new method is presented for automatic image...

متن کامل

Comparative Study on Automatic Image Annotation

With the detonative development of internet technologies in the web huge amount of images are available on the web. Large amount of research has been carried out on image retrieval since last few years. There is need for efficient and viable procedure to find visual information on demand. Recent research shows that there is semantic gap between low level features of image and semantic concepts ...

متن کامل

Combining Generative/Discriminative Learning for Automatic Image Annotation and Retrieval

In order to bridge the semantic gap exists in image retrieval, this paper propose an approach combining generative and discriminative learning to accomplish the task of automatic image annotation and retrieval. We firstly present continuous probabilistic latent semantic analysis (PLSA) to model continuous quantity. Furthermore, we propose a hybrid framework which employs continuous PLSA to mode...

متن کامل

Trans Media Relevance Feedback for Image Autoannotation

Automatic image annotation is an important tool for keyword-based image retrieval, providing a textual index for non-annotated images. Many image auto annotation methods are based on visual similarity between images to be annotated and images in a training corpus. The annotations of the most similar training images are transferred to the image to be annotated. In this paper we consider using al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015